\qquad
\qquad Date \qquad
Chapter 7 Chapter Test

Do you know HOW?

Solve each equation.

1. $8-3^{x}=-1$
2. $\log _{3} 81=x$
3. $\log x-\log 3=2$
4. You put $\$ 2000$ into an account earning 4% interest compounded continuously. Find the amount in the account at the end of 8 years.

Describe how the graph of each function is related to the graph of its parent function.
5. $y=-2^{x}+1$
6. $y=3^{x-4}$
7. $y=5^{x+1}-2$

Evaluate each logarithm.

8. $\log _{5} 125$
9. $\log _{\frac{1}{2}} \frac{1}{4}$
10. $\log _{3} 729$
11. $\log _{9} \frac{1}{3}$
12. $\log _{\frac{1}{4}} 16$
13. $\log _{8} \frac{1}{256}$

Write each equation in logarithmic form.
14. $7^{3}=343$
15. $\left(\frac{2}{3}\right)^{-3}=\frac{27}{8}$
16. $2^{-4}=0.0625$

Write each logarithmic expression as a single logarithm.
17. $\log 2-3 \log 1$
18. $\log a-\log a b$
19. $\frac{1}{3}\left(\log _{4} x+\log _{4} z\right)$
\qquad
\qquad Date \qquad
Chapter 7 Chapter Test (continued)

Use the Change of Base Formula to rewrite each expression using common logarithms.
20. $\log _{4} 12$
21. $\log _{2} 5$
22. $\log _{8} 14$
23. A parent increases a child's allowance by 15% each year. If the allowance is $\$ 3$ now, when will it reach $\$ 15$?
24. A scientist notes that the number of bacteria in a colony is 50 . Two hours later, she notes that the number of bacteria has increased to 80 . If this rate of growth continues, how much more time will it take for the number of bacteria to reach 100 ?

Graph each function.

25. $y=-3^{x}+1$
26. $y=\log _{5} x$
27. $y=\log (x+1)$

Do you UNDERSTAND?

28. Writing Describe the effect of different values of a on the function $y=a b^{x}$.
29. Vocabulary State which property or properties need to be used to write each expression as a single logarithm.
a. $\log _{6} 16-\log _{6} 4$
b. $2 \log _{2} 3+\log _{2} 4$
30. Reasoning Identify each function as linear, quadratic, or exponential. Explain your reasoning.
a. $y=4(2)^{x}$
b. $y=6(x)^{2}+1$
31. Writing Explain the difference between exponential growth and exponential decay.
