Chapter 6 Test

Do you know HOW?

Simplify each radical expression. Use absolute value symbols when needed.

2. $\sqrt[3]{-64y^9}$ -**4y^3** 1. $\sqrt{49x^2y^{10}}$ **3.** $\sqrt[5]{243x^{15}}$ $3x^3$ $7|xy^{5}|$

Multiply and simplify.

4. $\sqrt[3]{15} \times \sqrt[3]{18}$ 5. $\sqrt{7x^3} \cdot \sqrt{14x}$ $7x^2\sqrt{2}$ **6.** $3\sqrt[4]{4x^3} \cdot \sqrt[4]{8xy^5}$ $3\sqrt[3]{10}$ $6xv\sqrt[4]{2v}$

Rationalize each denominator. Simplify your answer.

8. $\frac{\sqrt{x}}{\sqrt{5}} = \frac{\sqrt{5x}}{5}$ 9. $\frac{\sqrt[3]{4}}{\sqrt[3]{2_x}} = \frac{\sqrt[3]{2x^2}}{x}$ 7. $\frac{1}{\sqrt{3}} \frac{\sqrt{3}}{3}$

Multiply.

10. $(7 + \sqrt{5})(1 + \sqrt{5})$ **11.** $(6 + \sqrt{10})^2$ **12.** $(5 + \sqrt{3})(2 - \sqrt{3})$ **7 - 3\sqrt{3}** $46 + 2\sqrt{10}$ $12 + 8\sqrt{5}$

Simplify each number.

- **15.** $2^{\frac{3}{4}}$ $\sqrt[4]{8}$ **13.** $27^{\frac{2}{3}}$ **9 14.** 25^{1.5} **125**
- Write each expression in simplest form. **16.** $\left(x^{\frac{3}{2}}\right)^{-2} \frac{1}{x^{3}}$ **17.** $\left(x^{\frac{3}{4}}\right)^{\frac{4}{3}}$ **X 18.** $\left(x^{-\frac{3}{8}y^{\frac{1}{4}}}\right)^{16} \frac{y^4}{x^6}$

Solve.

19.
$$\sqrt{2x+1} = 5$$

 $x = 12$ **20.** $(x+6)^{\frac{3}{4}} = 8$
 $x = 10$ **21.** $(x^2+13)^{\frac{1}{2}} = 7$
 $x = 6 \text{ and } x = -6$

Prentice Hall Foundations Algebra 2 • Teaching Resources Copyright © by Pearson Education, Inc., or its affiliates. All Rights Reserved.

Name	Class	Date

Chapter 6 Test (continued)

Let $f(x) = \sqrt{x} + 3$ and $g(x) = 4 - \sqrt{x}$. Perform each function operation and then find the domain.

22. $(f-g)(x)(f-g)(x) = 2\sqrt{x} - 1;$ 23. $(f \cdot g)(x)(f \cdot g)(x) = \sqrt{x} - x + 12;$ all real numbers ≥ 0

all real numbers ≥ 0

Let f(x) = 3x + 1 and $g(x) = x^2 + 2$. Find each value or expression.

24.
$$(f \circ g)(2)$$
 19 25. $(g \circ f)(-3)$ **66**

Graph each relation and its inverse.

26. y = x + 4

Rewrite each function to make it easy to graph using transformations of its parent function. Describe the graph.

28. $y = \sqrt{16x - 32}$ $y = 4\sqrt{x - 2}$; **29.** $y = \sqrt[3]{8x} + 3$ $y = 2\sqrt[3]{x} + 3$: 4 and translation 2 units right

vertical stretch of $y = \sqrt{x}$ by a factor of vertical stretch of $y = \sqrt[3]{x}$ by a factor of 3 and translation 3 units up

Do you UNDERSTAND?

- **30. Error Analysis** Explain the error in this simplification of radical expressions. What is the correct simplification? $\sqrt{2} \cdot \sqrt[3]{8} = \sqrt{2(8)} = \sqrt{16} = 4$ The product property does not apply to different indexes; $2\sqrt{2}$
- **31. Reasoning** Show that $\sqrt[6]{x^3} = \sqrt{x}$ by rewriting $\sqrt[6]{x^3}$ in exponential form. $\sqrt[6]{x^3} = x^{\frac{3}{6}} = x^{\frac{1}{2}} = \sqrt{x}$
- 32. A store is having a sale with a 15% discount on all items. In addition, employees get a \$20 discount on purchases of \$100 or greater. Will an employee get a better deal if the \$20 discount is applied first or if the 15% discount is applied first to their purchase of \$100? The employee will pay less if the 15% discount is applied first.

Prentice Hall Foundations Algebra 2 • Teaching Resources Copyright © by Pearson Education, Inc., or its affiliates. All Rights Reserved.