13.1 Exploring Periodic Data

Periodic function - repeats a pattern of y-vales (outputs) at regular intervals.Cycle - 1 complete pattern. A cycle may begin at any point on the graph of the function.Period - the horizontal length of 1 cycle, - in terms of x-values.

Example 1: Identifying Cycles and Periods

Analyze the periodic function. a) Identify 1 cycle in two different ways. b) Determine the period of the function.

Example 2: Identifying Periodic Functions

Determine whether each function is or is not periodic. If it is, find the period.

Amplitude - of a periodic function measures the amount of variation in the y-values. To find the amplitude:

Example 3: Find the Amplitude of the periodic function.

13.2 Angles (day 1)

An angle in standard position has:

- vertex is at the ______
- one ray is on the ______

Initial side - the ray on the positive x-axis

Terminal side - the other ray of the angle

The **measure of an angle in standard position** is the amount of rotation from the initial side to the terminal side.

The measure of an angle is **positive** when the rotation from the initial side to terminal side is ______.

The measure of an angle is **negative** when the rotation from the initial side to terminal side is ______. Sketch and angle in standard position:

Example 1: Measuring an Angle in Standard Position Find the measure of the angle.

Example 2: Sketching an Angle in Standard Position

Sketch each angle in standard position.

a. 85° b

b. -320°

c. 180°

Coterminal Angles - Two angles in standard position are coterminal if they have the same terminal side. For any given angle, there are infinitely many coterminal angles. To find a coterminal angle, **add or subtract 360°**.

Example 3: Finding Coterminal Angles

a. Find a positive angle and a negative angle that are b. Are the angles with measure 40° and 680° coterminal with 198°. coterminal? Explain.

c. Find the measure of an angle between 0° and 360° coterminal with 385°.

d. Find the measure of an angle between 0° and 360° coterminal with -356°.

Recall: Special Right Triangles

45°-45°-90° Let a leg be x.	30°-60°-90° L	et the shorter leg be x.								
Find the missing side lengths in each 45°-45°-90° triangle. Rationalize any denominators.										
1. hypotenuse = 1 inch	2. leg = 2 cm	3. hypotenuse = √3 ft								

Find the missing side lengths in each $30^{\circ}-60^{\circ}-90^{\circ}$ triangle. Rationalize any denominators. 4. shorter leg = 3 inch 5. longer leg = 1 cm 6. hypotenuse = 1 ft

13.2 The Unit Circle (day 2)

Warm Up: Sketch the angle in standard position:

1. Θ=30° 2. Θ=45°

3. **⊖=60°**

Unit Circle - a circle with a radius of _____ and its center is at the _____ Points on the unit circle are related to periodic functions. You can use the symbol Θ "theta" for the measure of an angle in standard position.

Sketch the unit circle:

Definition: Cosine and Sine of an Angle

Given: an angle in standard position with measure Θ .

The **cosine of** Θ is the _____-coordinate of the point at which the terminal side intersects the unit circle. The **sine of** Θ is the _____-coordinate of the point at which the terminal side intersects the unit circle. Sketch:

Example 4&5: Find the cosine and sine of the angle. Provide a sketch of the angle in standard position. a. 30° b. 45° c. 60°

Find the cosine and sine of the angle	e. Provide a sketch of the angle in sta	Indard position.
d. 0°	e. 90°	f. 120°

g. -120°

h. -60°

i. 150°

Practice Problems:

Calculator Needed: For angles that are not a multiple of 30° or 45°, you will need your calculator. Find $\cos\Theta$ and $\sin\Theta$.

 1. Θ=32°
 2. Θ=-210°
 3. Θ=-10°

Find a positive and negative co	oterminal angle for the given angle.	
4. 3. ⊖=400°	5. ⊖=-125°	6. 3. ⊖ = -57°

In which quadrant, or on which axis,	does the terminal side of each angle	lie? Sketch the angle to help you.
7. 210°	860°	9. 270°

Fill in The Unit Circle

13.3 Radian Measure (Day 1)

Warm Up: Find the circumference of a circle with the given radius or diameter. Round your answer to the nearest tenth.

1. radius 4 in

2. diameter 70 m

Central angle - an angle whose vertex is the	sketch:
of a circle	
Intercepted arc - the portion of the circle with endpoints on the sides of the central angle and remaining points within the interior of the angle.	
Radian - when the intercepted arc equals the radius, the measure of the angle is 1 radian	sketch:
The circumference of a circle is Thu	is there are in any circle.
• Since 2π radians =°, then π radians =	°

• Thus you can use this proportion to convert between degrees and radians.

Example 1: Use a proportion

a. Find the radian measure of 60°.

b. Find the degree measure of $\frac{5\pi}{2}$ radians

 Converting between Rad To convert degrees 	ans and Degrees to radians, multiply by	-										
• To convert radians	to degress, multiply by	-										
Example 2: Using Dimensional Analysis Convert the angle to degrees. Round to the nearest degree.												
a. $-\frac{3\pi}{4}$ radians	b. $\frac{\pi}{2}$ radians	c. 2radians										
Convert the angle to radiar	s Round to the nearest hundredth											

convert the angle to radiano. Roan		
d. 27°	e. 225°	f. 150°

Example 3: Find the exact values of $\cos\theta$ and $\sin\theta$ for each angle measure.

Step 1: Convert to degrees.

Step 2: Draw the angle. The terminal side is the hypotenuse.

Step 3: Complete the right triangle. Draw a leg to the *x-axis*.

Step 4: State the $\cos\Theta$ and $\sin\Theta$.

a. $\frac{\pi}{4}$ radians

b. $\frac{\pi}{6}$ radians

d. $\frac{5\pi}{6}$ radians

13.3 Arclength (Day 2)

Warm Up: Convert the angle to degrees. Draw the angle in standard position, as well as the corresponding right triangle. Then find the exact values for cos Θ and sin Θ .

You can find the length of an intercepted arc by using the proportion:

Length of an Intercepted Arc

For a circle of radius r and a central angle of measure Θ (in *radians*), the length *s* of the intercepted arc is:

Example 4: Finding the Length of an Arc

Find the length of the intercepted arc to the nearest tenth. Sketch a diagram! a. Given: A circle of radius 3 in, $\theta = \frac{5\pi}{6}$. b. Given: A circle of radius 5m, $\theta = \frac{2\pi}{3}$.

The Unit Circle: radius = _____

If you know quadrant 1, you can derive quadrants 2, 3, 4 by symmetry. Thus, let's study quadrant 1.

Coordinates (x, y) on the unit circle:

cos⊖ = _____

sin⊖ = _____

tan0 = _____

13.4 The Sine Function (Day 1)

Warm Up: Use the graph. State:

- 1. the period
- 2. the domain
- 3. the amplitude
- 4. the range

sine function $y=sin\Theta$: for each measure of Θ , the sine of Θ corresponds with the _____-coordinates on the unit circle.

y=sin⊖

Θ (degrees)	0°	30°	45°	60°	90°	180°	270°	360°
у								

Example 1: Interpreting the Sine Function in Degrees

- a. What is the value of $y=\sin\Theta$ for $\Theta=270^\circ$?
- b. For what values of Θ between 0° and 360° does the graph of y=sin Θ reach
 - the maxiumum value of y=1?
 - the minimum value of y=-1?
 - x-intercept of y=0? aka "zero"

Mathematical convention: An angle measure Θ can be expressed in degrees or in radians. However, when no unit is mentioned, you should use radians. Let's graph the sine function in radians...

y=sin⊖

Example 2: Estimating Sine Values in Radians

Use your graph above to estimate the value. Check your estimate with a calculator.

a. sin 2

b. sin π

For the sine function, find the following:

a. amplitude

b. period (in degrees and radians)

c. domain and range

Properties of Sine Functions

Suppose **y** = $a \sin b\theta$, where $a \neq 0$, b > 0, and Θ in radians.

- The amplitude of the function is _____
- The number of cycles in the interval from 0 to 2π is _____
- The period of the function is ______

Examples 3&4: Finding the Period and Amplitude of a Sine Function

- a. Find the amplitude.
- b. How many cycles does the sine function have in the interval from 0 to 2π ?
- c. Find the period.

The Θ -axis represents values from 0 to 2π . Each interval on the y-axis represents 1 unit.

13.4 The Sine Function (Day 2)

II. Graphing Sine Functions

You can use 5 points equally spaced through one cycle to sketch a sine curve. For a>0, this 5-point pattern is zero-max-zero-min-zero.

Example 5: Sketching a Graph

Sketch one cycle of each sine curve. Then write an equation for each graph. a. amplitude 2, period 4π , a>0

b. amplitude 3, period 4, a>0

c. Predict the 5-point pattern for the sine function when a<0. Then sketch amplitude 2, period $2\pi/3$.

Example 6: Graphing from a Function Rule Sketch one cycle of the following sine functions.

$1. y = \frac{1}{2}sin2\theta$,,	 ,	 	,	,	 ,	,	,,	8		 ,					 		 	
amplitude			 															 	
anpitude.		 	 																
period:	-		_		_		_					_	_				-		+
interval spacing		 	 			 					 					 		 	
on O-axis:		 	 			 					 							 	
5-point pattern:		 	 			 					 					 		 	
$2. y = 3\sin\frac{\pi}{2}\theta$,,	 ,	 			 ,		,,	1		 					 		 	
amplitudo			 								 					 			
ampillude.		 	 															 	
period:			_										_				_		•
interval spacing																			
on O-axis:		 	 			 					 					 		 	
5-point pattern:		 		ii		 		i:i		i	 					 t	3E3	 	
3 . $y = -4sin\frac{1}{2}\theta$									1										
amplitude:		 	 								 								
period:													_						•
interval spacing		 									 							 	
on θ-axis:		 				 					 					 		 	
5-point pattern:			 8			 								8	8		E	 	
· · · · · · ·																			

13.5 The Cosine Function (Day 1)

Warm up: Fill out the unit circle. Evaluate the following angles of cosine.

I. Graph the cosine function: y=cos Θ

b. In the interval from 0 to 2π , where do the maximum occur? minimum? zeros?

c. What is the 5-point pattern of the cosine graph?

Properties of Cosine Functions

Suppose **y** = $a \cos b\theta$, where $a \neq 0$, b > 0, and Θ in radians.

- The amplitude of the function is _____
- The number of cycles in the interval from 0 to 2π is _____
- The period of the function is _____

Example 2: Sketching the Graph of a Cosine Function

Sketch one cycle of the following cosine functions.

 1. $y = cos \frac{\pi}{2} 0$

 amplitude:

 period:

 interval spacing

 on Θ -axis:

 5-point pattern:

 2. $y = -3cos\theta$

 amplitude:

 period:

 interval spacing

 on Θ -axis:

 5-point pattern:

 2. $y = -3cos\theta$

 amplitude:

 period:

 interval spacing

 on Θ -axis:

 5-point pattern:

5. $y = 1.5c0s20$	1	 				[1	1	T		1		 	 	 	 	
amplitude:					 					1.002							
·				 	 				1			 	 				
period:				 													_
interval spacing								1	1								
on O-axis:											ļ						
										10000							

5-point pattern:

13.5 The Cosine Function (Day 2)

Warm up: Graph the following cosine functions.

1. $y = 3\cos 2\theta$	·····
amplitude:	
period:	
interval spacing on θ-axis:	
5-point pattern:	
2 . $y = -2\cos\theta$	······································
amplitude:	
period:	
interval spacing on θ-axis:	
5-point pattern:	

II. Solving Trigonometric Equations Example 4: Solving a Cosine Equation

Sol	ve the cosine equation	in the interval from 0 to 2π .	Round to the ne	earest hundredth.	Calculators needed.
a.	$-2\cos\theta = 1.2$	b. 3 <i>cos</i> 2 <i>t</i> =	=-2	c . 5 <i>cos</i>	$s\frac{\pi}{2}t = 3$

Identify the period, range, and amplitude of each function. 22. $y = 3\cos\theta$ 24. $y = 2\cos\frac{1}{2}t$

26. $y = 3\cos\left(-\frac{\theta}{3}\right)$ **28.** $y = 16\cos\frac{3\pi}{2}t$

13.6 The Tangent Function

Warm up: Use a calculator to find the sine and cosine of each Θ . Then calculate the ratio of sin Θ to cos Θ .

θ	sinθ	cosθ	<u>sinθ</u> cosθ
1. $\frac{\pi}{3}$			
2 . 30°			
3 . 90°			
4. π			
5. $\frac{7\pi}{6}$			

I. The Tangent Function

The $\cos\Theta$ is derived from the _____ - coordinate of the point on the unit circle.

The sin Θ is derived from the _____ - coordinate of the point on the unit circle.

The tan Θ is derived from the ratio of sin Θ to cos Θ . In other words: tan Θ = _____

y=tan⊖

θ (radians)	0	$\frac{\pi}{4}$	<u>π</u> 2	$\frac{3\pi}{4}$	π	$-\frac{\pi}{4}$	$-\frac{\pi}{2}$
у							

Features of the parent tangent function:

passes through:

each "branch" is:

x-intercepts (zeros):

vertical asymptotes:

"guide points":

Properties of Tangent Functions

Suppose $y = a \tan b\theta$, where b>0, and Θ in radians.

- The period of the function is _____
- 1 cycle occurs in the interval from _____ to _____
- There are vertical aymptotes at each end of the cycle.
- The pattern is "asymptote, -a, zero, a, asymptote".

Example 2: Graphing a Tangent Function

Sketch 2 cycles of each tangent function.

1. $y = tan\pi\theta$	()Y	 		[·····	 	
period:							 -								
1 cycle: from to												 			
VA:															
2 guide points:												 			
pattern:															
$2. y = tan 3\theta$	[-	}Y	 	 	(
period:						 	 			 	 				
1 cycle: from to												 			
VA:												 			
	10000	10000	10000	10000	a	 	 	(h	 				 ·	 	

pattern:

3. $y = tan\frac{\pi}{2}\theta$	 	 	 	 	 			 	 	 	 	·····	·····	
period:	 			 					 					
1 cycle: from to	 	 		 										,
VA:	 	 	 	 	 	ļ		 	 	 				
2 guide points:														

pattern:

13.7 Translating Sine and Cosine Functions Warm Up:

1. Graph $y=\tan\Theta$... again! (Try not to peek at prior notes.)

2. Compare each pair of equations. State the translations (horizontal, vertical) involved. a. y = 2x, y = 2x + 5b. y = |x|, y = |x + 3|c. $y = x^2$, $y = x^2 - 4$

d.
$$y = |x-2| + 1$$

e. $y = x^2$, $y = (x+3)^2 - 6$
d. $y = f(x)$, $y = f(x-h) + k$

I. Graphing Translations of Trigonometric Functions

Phase shift - the horizontal translation of a function. If f(x) is the "parent", then f(x-h) translates horizontally h units. For example: f(x-1) translates ______, f(x+3) translates ______. Vertical shift - the vertical translation of a function. If f(x) is the "parent", then f(x)+k translates vertically k units. For example: f(x) - 1 translates ______, f(x) + 3 translates ______.

Example 1: Identifying Phase Shifts and Vertical Shifts

What is the value of *h* and *k* in each translation? Describe the shift i.e. "3 units to the left".

a. f(x-2) b. y = cos(x+4) c. f(t-5) d. y = sin(x+3)

e. f(x) - 2 b. $y = \cos x + 4$ c. f(t) - 5 d. $y = \sin x + 3$

Example 2: Graphing Translations

Make a table and then graph the following functions on the same set of axes:

v =	SINX
,	0111/

х			
у			

y= sinx +	- 3		
x			
у			

y = cosx					y = cos(x	$(-\frac{\pi}{2})$			
х						х			
у						у			

Example 3: Graphing a Combined Translation

1. $y = sin(x + \pi) - 2$

amplitude:

phase shift:

period:

interval spacing on x-axis:

5 point pattern:

2. $y = 2cos(x - \frac{\pi}{2}) + 3$

amplitude:

vertical shift:

period:

phase shift:

interval spacing on x-axis:

vertical shift:

5 point pattern:

Summary: Families of Sine and Cosine Functions Transformed Function Parent

y=sinx

y=cosx

amplitude =

period =

h =

k =

13.7 Translating Sine and Cosine Functions (Day 2) Warm Up:

 $y = -3sin(x + \frac{\pi}{2}) + 2$

amplitude:

period:
phase shift:
interval spacing on x-axis:

vertical shift:

5 point pattern:

When the phase shift is a pesky number...

 $y = sin(x - \frac{\pi}{3})$

amplitude:

period:

phase shift:

interval spacing on x-axis:

vertical shift:

5 point pattern:

Graphing a translation of y = sin 2x...

 $y = sin2(x - \frac{\pi}{3}) - \frac{3}{2}$

amplitude:

period:

phase shift:

interval spacing on x-axis:

vertical shift:

 $y = -3sin2(x - \frac{\pi}{3}) - \frac{3}{2}$

amplitude:

period:

phase shift:

interval spacing on x-axis:

vertical shift:

5 point pattern:

5 point pattern:

$$y = 2\cos\frac{\pi}{2}(x+1) - 3$$

amplitude:

period:
phase shift:
interval spacing on x-axis:
vertical shift:
5 point pattern:

Example 5: Writing a Translation

Write an equation for each translation.

a. $y = sin\pi$, π units down

b. $y = -\cos x$, 2 units left

c. y = cosx, $\frac{\pi}{2}$ units up

d. y = 2sinx, $\frac{\pi}{4}units right$

13.8 Reciprocal Trigonometric Functions Warm up:

Find the reciprocal of each fraction:

|--|

Name the 3 trigonometric functions you have studied so far:

- 1. _____
- 2. _____
- 3. _____

These 3 trigonometric functions have reciprocals.

Definition: Cosecant, Sec	ant, and Cotangent		
Example 1: Using Reciproc	cals	is another to the periods building th	
csc 60°	cot 55°	sec 15°	
h Currence 0 5 Find	0	$-\frac{12}{2}$ Find 0	
b. Suppose $\cos\theta = \frac{1}{13}$. Find	sect.	c. Suppose $\sin\theta = \frac{1}{13}$. Find $\csc\theta$.	
Example 2: Find The Exact	Value	222 60°	222 00°
CSC 30	CSC 45	CSC 60	CSC 90
sec 30°	sec 45°	sec 60°	sec 90°

cot 30°	cot 45°	cot 60°	cot 90°

Example 3: Using Radians

a. Use your calculator (radian mode). Round your answer to the	e nearest hundredth.
--	----------------------

sec(-1) *csc*(-1.5) *sec*2

b. Find the exact value.

 $cot\frac{\pi}{3}$

cotπ

sec0

Example 4: Graph The Reciprocal Trigonometric Functions

x	0	$\frac{\pi}{2}$	π	$\frac{3\pi}{2}$	2π
y= sin x					
y= csc x					

								8	З.,						
									1.0000						
		1	1	1	1	1			-						
-						 	 						 		
-						 	 						 		
-	 	1			1	 								 1	1
-						 	 			 	 		 		<u> </u>

x	0	$\frac{\pi}{2}$	π	$\frac{3\pi}{2}$	2π
y= cos x					
y= sec x					

	_ .	
Ť		
 ······································	Y Y Y Y Y Y	······
 	++++++++++	
 	ļļļļļ.	
 	++++++++++++++++++	
 	tttttt	