13.1 Exploring Periodic Data

Periodic function - repeats a pattern of y-vales (outputs) at regular intervals.
Cycle - 1 complete pattern. A cycle may begin at any point on the graph of the function.
Period - the horizontal length of 1 cycle, - in terms of x-values.

Example 1: Identifying Cycles and Periods

Analyze the periodic function. a) Identify 1 cycle in two different ways. b) Determine the period of the function.
a.

b.

Example 2: Identifying Periodic Functions

Determine whether each function is or is not periodic. If it is, find the period.

b.

Amplitude - of a periodic function measures the amount of variation in the y-values. To find the amplitude:

Example 3: Find the Amplitude of the periodic function.

a.

b.

13.2 Angles (day 1)

An angle in standard position has:

- vertex is at the \qquad
- one ray is on the \qquad
Initial side - the ray on the positive x-axis
Terminal side - the other ray of the angle
The measure of an angle in standard position is the amount of rotation from the initial side to the terminal side.
The measure of an angle is positive when the rotation from the initial side to terminal side is \qquad .

The measure of an angle is negative when the rotation from the initial side to terminal side is \qquad -
Sketch and angle in standard position:

Example 1: Measuring an Angle in Standard Position

Find the measure of the angle.

Example 2: Sketching an Angle in Standard Position

Sketch each angle in standard position.
a. 85°
b. -320°
c. 180°

Coterminal Angles - Two angles in standard position are coterminal if they have the same terminal side. For any given angle, there are infinitely many coterminal angles. To find a coterminal angle, add or subtract 360°.

Example 3: Finding Coterminal Angles

a. Find a positive angle and a negative angle that are coterminal with 198°.
b. Are the angles with measure 40° and 680° coterminal? Explain.
c. Find the measure of an angle between 0° and 360° coterminal with 385°.
d. Find the measure of an angle between 0° and 360° coterminal with -356°.

Recall: Special Right Triangles

$45^{\circ}-45^{\circ}-90^{\circ}$ Let a leg be x.	$30^{\circ}-60^{\circ}-90^{\circ}$ Let the shorter leg be x.

Find the missing side lengths in each $45^{\circ}-45^{\circ}-90^{\circ}$ triangle. Rationalize any denominators.

1. hypotenuse $=1$ inch
2. $\mathrm{leg}=2 \mathrm{~cm}$
3. hypotenuse $=\sqrt{ } 3 \mathrm{ft}$

Find the missing side lengths in each $30^{\circ}-60^{\circ}-90^{\circ}$ triangle. Rationalize any denominators.
4. shorter leg $=3$ inch
5 . longer leg $=1 \mathrm{~cm}$
6. hypotenuse $=1 \mathrm{ft}$

13.2 The Unit Circle (day 2)

Warm Up: Sketch the angle in standard position:

1. $\Theta=30^{\circ}$
2. $\Theta=45^{\circ}$
3. $\Theta=60^{\circ}$

Unit Circle - a circle with a radius of \qquad and its center is at the \qquad
Points on the unit circle are related to periodic functions. You can use the symbol Θ "theta" for the measure of an angle in standard position.

Sketch the unit circle:

Definition: Cosine and Sine of an Angle

Given: an angle in standard position with measure Θ.
The cosine of Θ is the \qquad -coordinate of the point at which the terminal side intersects the unit circle.
The sine of $\boldsymbol{\theta}$ is the \qquad -coordinate of the point at which the terminal side intersects the unit circle.
Sketch:

Example 4\&5: Find the cosine and sine of the angle. Provide a sketch of the angle in standard position.
a. 30°
b. 45°
c. 60°

Find the cosine and sine of the angle. Provide a sketch of the angle in standard position.
d. 0°
e. 90°
f. 120°
g. -120°
h. -60°
i. 150°

Practice Problems:

Calculator Needed: For angles that are not a multiple of 30° or 45°, you will need your calculator. Find $\cos \Theta$ and $\sin \theta$.

1. $\Theta=32^{\circ}$
2. $\theta=-210^{\circ}$
3. $\theta=-10^{\circ}$

Find a positive and negative coterminal angle for the given angle.
4. 3. $\Theta=400^{\circ}$
5. $\Theta=-125^{\circ}$
6. 3. $\Theta=-57^{\circ}$

In which quadrant, or on which axis, does the terminal side of each angle lie? Sketch the angle to help you.
7. 210°
8. -60°
9. 270°

Fill in The Unit Circle

13.3 Radian Measure (Day 1)

Warm Up: Find the circumference of a circle with the given radius or diameter. Round your answer to the nearest tenth.

1. radius 4 in
2. diameter 70 m

Central angle - an angle whose vertex is the
sketch:
\qquad of a circle

Intercepted arc - the portion of the circle with endpoints on the sides of the central angle and remaining points within the interior of the angle.

Radian - when the intercepted arc equals the radius, sketch: the measure of the angle is 1 radian

- The circumference of a circle is \qquad . Thus there are \qquad in any circle.
- Since 2π radians = \qquad ${ }^{\circ}$, then π radians $=$ \qquad \circ
- Thus you can use this proportion to convert between degrees and radians.

Example 1: Use a proportion

a. Find the radian measure of 60° b. Find the degree measure of $\frac{5 \pi}{2}$ radians

Converting between Radians and Degrees

- To convert degrees to radians, multiply by \qquad
- To convert radians to degress, multiply by \qquad

Example 2: Using Dimensional Analysis

Convert the angle to degrees. Round to the nearest degree.
a. $-\frac{3 \pi}{4}$ radians
b. $\frac{\pi}{2}$ radians
c. 2radians

Convert the angle to radians. Round to the nearest hundredth.
d. 27°
e. 225°
f. 150°

Example 3: Find the exact values of $\cos \Theta$ and $\sin \Theta$ for each angle measure.
Step 1: Convert to degrees.
Step 2: Draw the angle. The terminal side is the hypotenuse.
Step 3: Complete the right triangle. Draw a leg to the \boldsymbol{x}-axis.
Step 4: State the $\cos \theta$ and $\sin \Theta$.
a. $\frac{\pi}{4}$ radians
b. $\frac{\pi}{6}$ radians
c. $\frac{\pi}{2}$ radians
d. $\frac{5 \pi}{6}$ radians

13.3 Arclength (Day 2)

Warm Up: Convert the angle to degrees. Draw the angle in standard position, as well as the corresponding right triangle. Then find the exact values for $\cos \theta$ and $\sin \theta$.

$$
\theta=\frac{\pi}{3}
$$

You can find the length of an intercepted arc by using the proportion:

Length of an Intercepted Arc

For a circle of radius r and a central angle of measure Θ (in radians), the length s of the intercepted arc is:

Example 4: Finding the Length of an Arc

Find the length of the intercepted arc to the nearest tenth. Sketch a diagram!
a. Given: A circle of radius 3 in, $\theta=\frac{5 \pi}{6}$.
b. Given: A circle of radius $5 \mathrm{~m}, \theta=\frac{2 \pi}{3}$.

The Unit Circle: radius = \qquad
If you know quadrant 1 , you can derive quadrants $2,3,4$ by symmetry. Thus, let's study quadrant 1 .

Now let's do all four quadrants...

Fill in The Unit Circle

Coordinates (\mathbf{x}, \mathbf{y}) on the unit circle:
$\cos \theta=$ \qquad
$\sin \theta=$ \qquad
$\tan \Theta=$ \qquad

13.4 The Sine Function (Day 1)

Warm Up: Use the graph. State:

1. the period
2. the domain
3. the amplitude
4. the range
sine function $\mathbf{y}=\mathbf{s i n} \Theta$: for each measure of Θ, the sine of Θ corresponds with the \qquad -coordinates on the unit circle.
$y=\sin \theta$

Θ (degrees)	0°	30°	45°	60°	90°	180°	270°	360°
y								

Example 1: Interpreting the Sine Function in Degrees

a. What is the value of $y=\sin \Theta$ for $\Theta=270^{\circ}$?
b. For what values of Θ between 0° and 360° does the graph of $y=\sin \Theta$ reach

- the maxiumum value of $y=1$?
- the minimum value of $y=-1$?
- x-intercept of $\mathrm{y}=0$? aka "zero"

Mathematical convention: An angle measure Θ can be expressed in degrees or in radians. However, when no unit is mentioned, you should use radians. Let's graph the sine function in radians...
$y=\sin \theta$

Θ (radians)					
y					

Example 2: Estimating Sine Values in Radians

Use your graph above to estimate the value. Check your estimate with a calculator.
a. $\sin 2$
b. $\sin \pi$

For the sine function, find the following:
a. amplitude
b. period (in degrees and radians)
c. domain and range

Properties of Sine Functions

Suppose $\mathbf{y}=\boldsymbol{a} \boldsymbol{\operatorname { s i n }} \boldsymbol{b} \boldsymbol{\theta}$, where $a \neq 0, b>0$, and Θ in radians.

- The amplitude of the function is \qquad
- The number of cycles in the interval from 0 to 2π is \qquad
- The period of the function is \qquad

Examples 3\&4: Finding the Period and Amplitude of a Sine Function

a. Find the amplitude.
b. How many cycles does the sine function have in the interval from 0 to 2π ?
c. Find the period.

The Θ-axis represents values from 0 to 2π. Each interval on the y-axis represents 1 unit.

13.4 The Sine Function (Day 2)

II. Graphing Sine Functions

You can use 5 points equally spaced through one cycle to sketch a sine curve. For $\mathrm{a}>0$, this 5 -point pattern is zero-max-zero-min-zero.

Example 5: Sketching a Graph

Sketch one cycle of each sine curve. Then write an equation for each graph.
a. amplitude 2, period $4 \pi, a>0$

b. amplitude 3 , period 4 , $a>0$

c. Predict the 5-point pattern for the sine function when $\mathrm{a}<0$. Then sketch amplitude 2 , period $2 \pi / 3$.

Example 6: Graphing from a Function Rule

Sketch one cycle of the following sine functions.

1. $y=\frac{1}{2} \sin 2 \theta$ amplitude:
period:
interval spacing on Θ-axis:

5-point pattern:
2. $y=3 \sin \frac{\pi}{2} \theta$
amplitude:
period:
interval spacing on Θ-axis:

5-point pattern:
3. $y=-4 \sin \frac{1}{2} \theta$
amplitude:
period:
interval spacing on Θ-axis:

5-point pattern:

13.5 The Cosine Function (Day 1)

Warm up: Fill out the unit circle. Evaluate the following angles of cosine.

$\begin{array}{ll}\text { 1. } \cos 0^{\circ} & \text { 2. } \cos 90^{\circ}\end{array}$
3. $\cos 180^{\circ}$
4. $\cos 270^{\circ}$
5. $\cos 360^{\circ}$
6. $\cos 0$
7. $\cos \frac{\pi}{2}$
8. $\cos \pi$

Remember. $\cos \Theta$ equals the ___-coordinate on the unit circle.
I. Graph the cosine function: $\mathbf{y}=\cos \theta$

Example 1: Interpreting the Graph of $\mathbf{y}=\cos \Theta$

a. Use your graph above. Find the following: domain
b. In the interval from 0 to 2π, where do the maximum occur? minimum? zeros?
c. What is the 5 -point pattern of the cosine graph?

Properties of Cosine Functions

Suppose $\mathbf{y}=\boldsymbol{a} \boldsymbol{\operatorname { c o s }} \boldsymbol{b} \boldsymbol{\theta}$, where $\mathrm{a} \neq 0, \mathrm{~b}>0$, and Θ in radians.

- The amplitude of the function is \qquad
- The number of cycles in the interval from 0 to 2π is \qquad
- The period of the function is \qquad

Example 2: Sketching the Graph of a Cosine Function

Sketch one cycle of the following cosine functions.

1. $y=\cos \frac{\pi}{2} \theta$
amplitude:

5-point pattern:
2. $y=-3 \cos \theta$ amplitude:
period:
interval spacing on Θ-axis:

5-point pattern:
3. $y=1.5 \cos 2 \theta$
amplitude:
period:
interval spacing on Θ-axis:

5-point pattern:

13.5 The Cosine Function (Day 2)

Warm up: Graph the following cosine functions.

1. $y=3 \cos 2 \theta$
amplitude:
period:
interval spacing on Θ-axis:

5-point pattern:
2. $y=-2 \cos \theta$
amplitude:
period:
interval spacing on Θ-axis:

5-point pattern:

II. Solving Trigonometric Equations

Example 4: Solving a Cosine Equation

Solve the cosine equation in the interval from 0 to 2π. Round to the nearest hundredth. Calculators needed.
a. $-2 \cos \theta=1.2$
b. $3 \cos 2 t=-2$
c. $5 \cos \frac{\pi}{2} t=3$

Identify the period, range, and amplitude of each function.
22. $y=3 \cos \theta$
24. $y=2 \cos \frac{1}{2} t$
26. $y=3 \cos \left(-\frac{\theta}{3}\right)$
28. $y=16 \cos \frac{3 \pi}{2} t$

13.6 The Tangent Function

Warm up: Use a calculator to find the sine and cosine of each Θ. Then calculate the ratio of $\sin \Theta$ to $\cos \theta$.

θ	$\sin \theta$	$\cos \theta$	$\frac{\sin \theta}{\cos \theta}$
1. $\frac{\pi}{3}$			
2. 30°			
3. 90°			
$4 . \pi$			
5. $\frac{7 \pi}{6}$			

I. The Tangent Function

The $\cos \theta$ is derived from the \qquad - coordinate of the point on the unit circle.

The $\sin \Theta$ is derived from the \qquad - coordinate of the point on the unit circle.

The $\tan \theta$ is derived from the ratio of $\sin \Theta$ to $\cos \theta$. In other words: $\tan \Theta=$ \qquad

$y=\tan \theta$

Θ (radians)	0	$\frac{\pi}{4}$	$\frac{\pi}{2}$	$\frac{3 \pi}{4}$	π	$-\frac{\pi}{4}$	$-\frac{\pi}{2}$
y							

Features of the parent tangent function:
passes through:
each "branch" is:
x-intercepts (zeros):
vertical asymptotes:
"guide points":

Properties of Tangent Functions

Suppose $\mathbf{y}=\boldsymbol{a} \tan \boldsymbol{b} \boldsymbol{\theta}$, where $\mathrm{b}>0$, and Θ in radians.

- The period of the function is \qquad
- 1 cycle occurs in the interval from \qquad to \qquad
- There are vertical aymptotes at each end of the cycle.
- The pattern is "asymptote, -a, zero, a, asymptote".

Example 2: Graphing a Tangent Function

Sketch 2 cycles of each tangent function.

1. $y=\tan \pi \theta$
period:

1 cycle: from \qquad to \qquad

VA:

2 guide points:
 pattern:
2. $y=\tan 3 \theta$ period:

1 cycle: from \qquad to \qquad

VA:

2 guide points:

pattern:
3. $y=\tan \frac{\pi}{2} \theta$
period:

1 cycle: from \qquad to \qquad

VA:

2 guide points:

pattern:

13.7 Translating Sine and Cosine Functions

Warm Up:

1. Graph $y=\tan \Theta \ldots$ again! (Try not to peek at prior notes.)

Features of the tangent function:
passes through:
each "branch" is:
x-intercepts (zeros):
vertical asymptotes:
"guide points":
2. Compare each pair of equations. State the translations (horizontal, vertical) involved.
a. $y=2 x, y=2 x+5$
b. $y=|x|, \quad y=|x+3|$
c. $y=x^{2}, y=x^{2}-4$
d. $y=|x-2|+1$
e. $y=x^{2}, \quad y=(x+3)^{2}-6$
d. $y=f(x), \quad y=f(x-h)+k$

I. Graphing Translations of Trigonometric Functions

Phase shift - the horizontal translation of a function. If $f(x)$ is the "parent", then $f(x-h)$ translates horizontally h units. For example: $f(x-1)$ translates \qquad , $f(x+3)$ translates \qquad .
Vertical shift - the vertical translation of a function. If $f(x)$ is the "parent", then $f(x)+k$ translates vertically k units. For example: $f(x)-1$ translates \qquad , $f(x)+3$ translates \qquad .

Example 1: Identifying Phase Shifts and Vertical Shifts

What is the value of h and k in each translation? Describe the shift i.e. " 3 units to the left".
a. $f(x-2)$
b. $y=\cos (x+4)$
c. $f(t-5)$
d. $y=\sin (x+3)$
b. $y=\cos x+4$
c. $f(t)-5$
d. $y=\sin x+3$
e. $f(x)-2$

Example 2: Graphing Translations

Make a table and then graph the following functions on the same set of axes:
$y=\sin x$

x					
y					

$y=\sin x+3$

x					
y					

\mathbf{x}					
\mathbf{y}					

$y=\cos \left(x-\frac{\pi}{2}\right)$

x					
y					

Example 3: Graphing a Combined Translation

1. $y=\sin (x+\pi)-2$
amplitude:
period:
phase shift:
interval spacing on x-axis:
vertical shift:
2. $y=2 \cos \left(x-\frac{\pi}{2}\right)+3$
amplitude:
period:
phase shift:
interval spacing on x-axis:
vertical shift:

5 point pattern:

5 point pattern:

Summary: Families of Sine and Cosine Functions Parent
 Transformed Function

$y=\sin x$ \qquad
$y=\cos x$
amplitude $=$
period $=$
$\mathrm{h}=$
$\mathrm{k}=$

13.7 Translating Sine and Cosine Functions (Day 2)

Warm Up:
$y=-3 \sin \left(x+\frac{\pi}{2}\right)+2$
amplitude:
period:
phase shift:
interval spacing on x-axis:
vertical shift:

5 point pattern:

When the phase shift is a pesky number...

$y=\sin \left(x-\frac{\pi}{3}\right)$
amplitude:
period:
phase shift:
interval spacing on x-axis:
vertical shift:

5 point pattern:

Graphing a translation of $y=\sin 2 x \ldots$
$y=\sin 2\left(x-\frac{\pi}{3}\right)-\frac{3}{2}$
amplitude:
period:
phase shift:
interval spacing on x-axis:
vertical shift:
$y=-3 \sin 2\left(x-\frac{\pi}{3}\right)-\frac{3}{2}$
amplitude:
period:
phase shift:
interval spacing on x-axis:
vertical shift:

5 point pattern:

5 point pattern:
$y=2 \cos \frac{\pi}{2}(x+1)-3$
amplitude:
period:
phase shift:
interval spacing on x-axis:
vertical shift:

5 point pattern:

Example 5: Writing a Translation

Write an equation for each translation.
a. $y=\sin \pi, \pi$ units down
b. $y=-\cos x, 2$ units left
c. $y=\cos x, \frac{\pi}{2}$ units $u p$
d. $y=2 \sin x, \frac{\pi}{4}$ units right

13.8 Reciprocal Trigonometric Functions

Warm up:

Find the reciprocal of each fraction:

1. $\frac{9}{13}$
2. $-\frac{5}{8}$
3. $\frac{1}{2 \pi}$
4. $\frac{14}{-t}$
5. θ

Name the 3 trigonometric functions you have studied so far:

1. \qquad
2. \qquad
3. \qquad

These 3 trigonometric functions have reciprocals.
Definition: Cosecant, Secant, and Cotangent

Example 1: Using Reciprocals

a. Use your calculator (degree mode). Round your answer to the nearest hundredth. $\csc 60^{\circ}$ $\cot 55^{\circ}$
$\sec 15^{\circ}$
b. Suppose $\cos \theta=\frac{5}{13}$. Find $\sec \theta$.
c. Suppose $\sin \theta=\frac{-12}{13}$. Find $\csc \theta$.

Example 2: Find The Exact Value

$\csc 30^{\circ}$
$\csc 45^{\circ}$
$\csc 60^{\circ}$
$\csc 90^{\circ}$
$\sec 30^{\circ}$
$\sec 45^{\circ}$
$\sec 60^{\circ}$
$\sec 90^{\circ}$
$\cot 30^{\circ}$
$\cot 45^{\circ}$
$\cot 60^{\circ}$
$\cot 90^{\circ}$

Example 3: Using Radians

a. Use your calculator (radian mode). Round your answer to the nearest hundredth. $\sec (-1)$

$$
\csc (-1.5)
$$

$\sec 2$
b. Find the exact value.

$$
\cot \frac{\pi}{3}
$$

$$
\text { cot } \pi
$$

$$
\sec 0
$$

Example 4: Graph The Reciprocal Trigonometric Functions

x	0	$\frac{\pi}{2}$	π	$\frac{3 \pi}{2}$	2π
$y=\sin x$					
$y=\csc x$					

\boldsymbol{x}	0	$\frac{\pi}{2}$	π	$\frac{3 \pi}{2}$	2π
$\boldsymbol{y}=\cos \boldsymbol{x}$					
$\boldsymbol{y}=\sec \boldsymbol{x}$					

